
149

HOW TO CREATE ORDER IN LARGE CLOSED
SUBSETS OF WORDNET-TYPE DICTIONARIES

Ahti Lohk, Ottokar Tilk, Leo Võhandu

Abstract. This article presents a new two-step method to handle and
study large closed subsets of WordNet-type dictionaries with the goal
of finding possible structural inconsistencies. The notion of closed
subset is explained using a WordNet tree. A novel and very fast method
to order large relational systems is described and compared with some
other fast methods. All the presented methods have been tested using
Estonian1 and Princeton WordNet2 largest closed sets.

Keywords: thesaurus, closed set, seriation, Power Iteration Clustering
(PIC), reducing number of crossings, WordNet

1. Introduction

There are more than 60 WordNets in the world3. The main idea and basic design
of all these lexical resources came from Princeton WordNet (more in Miller et al.
1990). Each WordNet is structured along the same lines: synonyms (sharing the
same meaning) are grouped into synonym sets (synsets). Synsets are connected
to each other by semantic relations, like hyperonymy (IS-A) and meronymy
(IS-PART-OF). In this article only hyperonymy-hyponymy relations are considered
as objects of analysis. Of course, it is easy to extend the analysis over different word
classes and different semantic relations.

WordNet has been used for a number of different purposes in information sys-
tems, including word sense disambiguation (Li et al. 1995), information retrieval
(Rila et al. 1998), automatic text classification and structuring (Morato et al. 2004),
automatic text summarization, natural language generation (Jing et al. 1998),
machine translation (Khan et al. 2009) and even language teaching applications
(Morato et al. 2004). A description of the Estonian WordNet and its properties has
been given by Orav et al. (2011).

In applications where WordNet usage is considerable, the quality of the result
depends on the quality of the WordNet used. Our analysis shows clearly that many

1 Estonian WordNet: http://www.cl.ut.ee/ressursid/teksaurus/test/estwn.cgi.et (08.01.2013).
2 Princeton WordNet: http://wordnet.princeton.edu/ (08.01.2013).
3 The Global WordNet Association: http://www.globalwordnet.org/gwa/wordnet_table.html (08.01.2013).

doi:10.5128/ERYa9.10

E
E
S
TI

 R
A

K
E
N

D
U

S
LI

N
G

V
IS

TI
K

A
 Ü

H
IN

G
U

 A
A

S
TA

R
A

A
M

A
T

9
,

1
4

9
–1

6
0

150

WordNet-type dictionaries have a large closed subset (Table 1) caused by such
semantic relations where one synset has connections to more than one supersynset.
Liu et al. analyse mistakes in WordNet structures that arise particularly in cases
where a synset has more than one sypersynsets (Liu et al. 2004). Richens extends
the ideas of Liu et al. and presents a list of anomalies in the WordNet verb hierarchy
and methods for finding them (Richens 2008)4. Vider (2001) proposes that in the
best case every synset has only one supersynset. Closed subsets with more than one
supersynset refer to possible causes of errors (Richens 2008, Lohk et al. 2012a).
We present a convenient tool to study the possible structural inconsistencies of
such large separated subsets.

For every synset in WordNet we have a matrix representation, as in Figure 3,
upper level on the right. As we have to deal with very big matrices one needs a well
ordered final representation of such a matrix to understand its hidden structure.
Our goal is to reorder that matrix into the form of Figure 3, lower level on the right.
That representation corresponds to the so-called Multidimensional Scale represen-
tation in psycholinguistics.

In the next section we explain the content of a closed set (Lohk et al. 2012b).

2. Closed sets

The synsets of WordNet-type dictionaries have as semantic connections hierar-
chy creating ones (has_hypernym, has_meronym, etc.) as well nonhierarchical
ones (near_synonym, be_in_state, etc.). Using hierarchical connections makes
WordNet to be a set of trees, whereby part of those trees are threaded (That is a
fact from authors’ analysis). The vertices of trees are synsets and edges are always
some semantic connections.

Such tree has always a notion (synset) on the highest level (so-called root
vertice) and other vertices on different levels. In given context we call root vertice
also a root synset.

Figure 1. Natural tree of the WordNet with closed sets

4 Results tables relevant to ‘Anomalies in the WordNet Verb Hierarchy’, paper delivered to COLING 2008, Manchester,
UK, August 2008: http://www.rockhouse.me.uk/Linguistics/ (08.01.2013).

151

We have an invented example of such a WordNet tree in Figure 1. The synsets
of the given tree (vertices) can be divided into seven levels. On the first level is the
most general semantic synset – the root synset, and on the last levels (level 6 and
level 7) synsets with a possibly concrete meaning. For example, based on semantic
connection has_hyponym Princeton WordNet (version 3.0) has 346 root synsets
(= trees) and Estonian WordNet (version 64) 204 synsets.

In order to understand closed subsets (Lohk et al. 2012b) in Figure 1 we have
to consider only any two neighbouring levels. Let us take for example levels 3 and
4. If we separate those levels with their vertices, one can see that the connections
between vertices create two closed sets of vertices. To recognise possible errors it
is important to study such sets, where subsynset has a semantic connection with at
least two different supersynsets. Such sets are presented in Figure 1 with thick lines
and there are four of them. (The number of all closed subsets in Figure1 is 15). For
example, Estonian WordNet (version 64) has as a maximal closed set with dimen-
sions 4,945 x 457. In the language of Figure 1, this closed set has 4,945 vertices in
the lower level and 457 vertices in the upper level.

The following table presents an overview of maximal closed sets in the WordNet-
type dictionaries that we have analysed to date.

Table 1. Dimensions of the maximal closed set in a WordNet

Seq.
No.

Name and version
of the WordNet

Number
of the synsets

Dimensions
of the maximal closed set

1 Polish WordNet 1.7 105 074 28 279 x 3 595
2 Cornetto, 1.3 70 492 10 418 x 556
3 Estonian WordNet, 64 54 078 4 945 x 457
4 Princeton WordNet, 3.0 117 659 1 333 x 167
5 Finnish WordNet, 1.1.2 117 659 1 248 x 165
6 Catalan WordNet, 3.0 99 253 1 007 x 91
7 Slovenian WordNet, 3.0 42 919 248 x 3

The number of closed subsets separated using the semantic relation has_hypero-
nym for all those WordNets remains between 4000 and 20 000.

A very suitable algorithm to separate closed subsets is given by Flannery et
al. (2009). An example of a closed subset with real data is presented in Figure 2.

Figure 2. Real example of a closed subset (Princeton WordNet, version 3.0), rotated 90 degrees

The next section is dedicated to the study of such maximal closed sets.

152

3. Improving identification of mistakes by reducing
the number of crossings

To visually identify possible mistakes in the connections between the synsets of a
closed subset of a WordNet it is necessary to visualize the connections as clearly
and with as little clutter as possible. One way to achieve this goal is to reduce the
number of crossings in the graph representation of the WordNet by reordering
vertices as shown in Figure 3.

�
)LJXUH����*UDSK��LWV�FRUUHVSRQGLQJ�DGMDFHQF\�PDWUL[�SORWWHG�RQ�WKH�ULJKW��ZLWK�

GLIIHUHQW�SHUPXWDWLRQV�RI�YHUWLFHV��LOOXVWUDWLQJ�KRZ�D�JRRG�UHRUGHULQJ�FDQ�UHGXFH�WKH�QXPEHU�
RI�FURVVLQJV�LQ�WKH�ELSDUWLWH�JUDSK��IURP�����WR���LQ�WKLV�H[DPSOH��

7KHUH�DUH�PDQ\�DOJRULWKPV�IRU� WKLV� WDVN��ZLWK�GLIIHUHQW�DSSURDFKHV�±�VXFK�DV�
JHQHWLF� DOJRULWKPV� �0lNLQHQ�� 6LHUDQWD� ������� KHXULVWLF� DOJRULWKPV� �H�J�� EDU\FHQWHU�
�6XJL\DPD�HW� DO���������PHGLDQ� �(DGHV��:RUPDOG��������DQG� IRU� VPDOO�JUDSKV�HYHQ�
H[DFW�PHWKRGV��-�QJHU��0XW]HO��������,Q�WKH�VDPH�SDSHU�LQ�ZKLFK�-�QJHU�DQG�0XW]HO�
LQWURGXFHG� WKHLU� H[DFW�PHWKRG�� WKH\� DOVR� FRPSDUHG�GLIIHUHQW� KHXULVWLF� DOJRULWKPV�RQ�
ODUJHU� JUDSKV� IRU� ZKLFK� WKH� H[DFW� PHWKRG� LV� QRW� YLDEOH�� 7KH\� FRQFOXGHG� WKDW� WKH�
LWHUDWHG�EDU\FHQWHU�PHWKRG�ZDV�FOHDUO\�WKH�EHVW�FKRLFH�IRU�ERWK�LWV�VSHHG�DQG�VROXWLRQ�
TXDOLW\��

�����7KH�WZR�VWHS�PHWKRG�IRU�UHGXFLQJ�WKH�QXPEHU�RI�FURVVLQJV�
,Q�WKLV�ZRUN�ZH�LQWURGXFH�D�QRYHO�WHFKQLTXH�ZKLFK�RXWSHUIRUPV�RWKHU�ZLGHO\�

XVHG�PHWKRGV�LQFOXGLQJ�EDU\FHQWHU�KHXULVWLF��2XU�PHWKRG�FRQVLVWV�RI�WZR�VWHSV��
�

����3RZHU�LWHUDWLRQ�VHULDWLRQ��
����0HGLDQ�KHXULVWLF��
�
)LUVW� OHW� XV� IRFXV� RQ� WKH� VHFRQG� VWHS� ±� WKH� PHGLDQ� KHXULVWLF� E\� (DGHV� DQG�

:RUPDOG� �������� 7KH� PHGLDQ� KHXULVWLF� LV� D� ZHOO� NQRZQ� PHWKRG� IRU� FURVVLQJ�
PLQLPL]DWLRQ��7R�UHGXFH�FURVVLQJV�� WKLV�PHWKRG�ILQGV� WKH�PHGLDQ�RI� WKH�SRVLWLRQV�RI�
DGMDFHQW�YHUWLFHV�IRU�HYHU\�YHUWH[�DQG�WKHQ�UDQNV�WKH�YHUWLFHV�LQ�D�OD\HU�DFFRUGLQJ�WR�
WKHVH�YDOXHV��7HFKQLFDOO\�LW�LV�YHU\�VLPLODU�WR�WKH�EDU\FHQWHU�KHXULVWLF��6XJL\DPD�HW�DO��
������� WKH�RQO\�GLIIHUHQFH�EHLQJ� WKDW� WKH� ODWWHU�XVHV�PHDQ�YDOXHV�RI� WKH�SRVLWLRQV�RI�
DGMDFHQW�YHUWLFHV� LQVWHDG�RI�PHGLDQ�YDOXHV��7KLV�PHWKRG� LV�RIWHQ�DSSOLHG� LWHUDWLYHO\��
IL[LQJ�RQH�OD\HU�DQG�DQG�UHRUGHULQJ�WKH�RWKHU�LQ�WXUQV��XQWLO�WKHUH�LV�QR�FKDQJH�LQ�WKH�
RUGHU� RI� YHUWLFHV�� 7KH� ILQDO� RXWFRPH� RI� WKH� PHGLDQ� �DQG� DOVR� EDU\FHQWHU�� KHXULVWLF�
GHSHQGV� RQ� WKH� LQLWLDO� VWDWH� RI� WKH� JUDSK�� 7R� JDLQ� EHWWHU� UHVXOWV� RQH� FDQ� UHVWDUW� WKH�
DOJRULWKP�D�QXPEHU�RI� WLPHV�ZLWK�GLIIHUHQW� UDQGRP� LQLWLDO� RUGHULQJV� DQG�FKRRVH� WKH�
EHVW�UHVXOW�EXW��DV�-�QJHU�DQG�0XW]HO��������FRQFOXGHG��IRU�ELJJHU�JUDSKV�WKH�UHVXOWV�
LPSURYH�RQO\� VOLJKWO\��7KH�SXUSRVH�RI� WKH� ILUVW� VWHS�RI�RXU�PHWKRG� LV�QRW� WR� UHO\�RQ�

Figure 3. Graph (its corresponding adjacency matrix plotted on the right) with different
permutations of vertices, illustrating how a good reordering can reduce the number
of crossings in the bipartite graph (from 206 to 0 in this example)

There are many algorithms for this task, with different approaches – such as genetic
algorithms (Mäkinen, Sieranta 1994), heuristic algorithms (e.g. barycenter (Sugi-
yama et al. 1981), median (Eades, Wormald 1994)) and for small graphs even exact
methods (Jünger, Mutzel 1997). In the same paper in which Jünger and Mutzel
introduced their exact method, they also compared different heuristic algorithms
on larger graphs for which the exact method is not viable. They concluded that
the iterated barycenter method was clearly the best choice for both its speed and
solution quality.

3.1. The two-step method for reducing the number of crossings

In this work we introduce a novel technique which outperforms other widely used
methods including barycenter heuristic. Our method consists of two steps:

1. Power iteration seriation;
2. Median heuristic.

First let us focus on the second step – the median heuristic by Eades and Wormald
(1994). The median heuristic is a well known method for crossing minimization. To

153

reduce crossings, this method finds the median of the positions of adjacent vertices
for every vertex and then ranks the vertices in a layer according to these values.
Technically it is very similar to the barycenter heuristic (Sugiyama et al. 1981), the
only difference being that the latter uses mean values of the positions of adjacent
vertices instead of median values. This method is often applied iteratively, fixing
one layer and reordering the other in turns, until there is no change in the order of
vertices. The final outcome of the median (and also barycenter) heuristic depends
on the initial state of the graph. To gain better results one can restart the algorithm
a number of times with different random initial orderings and choose the best result
but, as Jünger and Mutzel (1997) concluded, for bigger graphs the results improve
only slightly. The purpose of the first step of our method is not to rely on random
ordering, but to preprocess the graph with the aim of providing as good a starting
point for the median heuristic as possible.

The first step of our method is a custom modification of a very fast (approxi-
mately linear to the input size), effective and simple clustering algorithm, Power
Iteration Clustering (PIC) by Lin and Cohen (2010). The name of their method
comes from the power iteration eigenvalue algorithm on which it is based.

7KH� SRZHU� LWHUDWLRQ� DOJRULWKP� LV� XVHG� WR� ILQG� WKH� GRPLQDQW� HLJHQYDOXH� Ǌ1
�DVVXPLQJ�WKHUH� LV�RQH� L�H�� _Ǌ1_�!�_Ǌ2_���_Ǌ3_���«���_Ǌn|) and eigenvector v1 of a
matrix A. The algorithm takes the steps described in Figure 4. After a sufficient
amount of iterations bt converges to v1 of A.

Figure 4. Description of power iteration eigenvalue algorithm

The PIC algorithm applies power iteration to a row-normalised (all elements in
a row sum up to 1) similarity matrix W. Since the dominant eigenvector of W is
a constant vector, it is useless for clustering (that’s also the reason for additional
constraint: b0���c1, i.e. initial vector must not be a constant vector). Therefore,
to turn the power iteration eigenvalue algorithm into a clustering algorithm,
Lin and Cohen augmented it with a stopping criterion which stops the process
before converging to the constant dominant eigenvector. As a result we get a vec-
tor bt (PIC-vector) which is an eigenvalue-weighted linear combination of all the
eigenvectors of W and turns out to be a good clustering indicator. The main pro-
cedure of PIC is described in Figure 5, where ࣕ is a small number (e.g. 10-5) used
as a parameter for stopping criterion and dt is a vector describing the changes
(compared to previous iteration) in the values of the elements of vector bt. The
algorithm is stopped when for two consecutive iterations dt has remained almost
constant i.e. none of the absolute differences of changes are larger than ࣕ. Lin
and Cohen used k-means on the PIC-vector to obtain the final result in the form
of clusters.

154

Figure 5. Description of the main subroutine of PIC algorithm

Our own work has shown that PIC-vector can also be successfully used for seria-
tion. To do that, we first calculate two PIC-vectors – one for rows and the other
for columns. Then we reorder the rows and columns of the matrix according to the
ascending or descending order of the values in the corresponding PIC-vector. The
exact procedure is shown in Figure 6 where Wr and Wc are normalised similarity
matrices, br and bc PIC-vectors and lr and lc labels for reordering. Lower indices r
and c denote rows and columns respectively.

Figure 6. Description of seriation procedure using PIC algorithm

For the first step of the crossing minimisation method we use the power iteration
seriation with a very simple symmetric similarity function where the similarity
s(xi,xj) = s(xj,xi) between two vertices xi and xj from the same layer is equal to
the number of their common neighbours in the opposite layer: s(xi,xj) = s(xj,xi) =
|n(xi)�n(xj)| (where n(x) denotes the set of neighbours of x). If we represent the
bipartite graph as an adjacency matrix A and nth row of A as A(n), then we can
rewrite the function as follows:

The similarity matrix of upper layer vertices Sr (or row similarity matrix of A) where
element Sr(i,j) = s(xi,xj) can then be calculated as Sr = AAT and the similarity matrix
of lower layer vertices (or column similarity matrix of A) can be calculated as Sc =
ATA. Both matrices have to be normalised before using power iteration seriation
on them.

Since the elements of PIC-vector corresponding to similar objects (vertices in our
case) tend to obtain similar values, the positions of vertices after seriation also tend
to correlate with the number of common neighbours. As a result subsets of vertices
with many common neighbours clump together after processing with power itera-
tion seriation in the first step of our method. This kind of approach alone does not
always provide very good results in terms of the number of crossings. For example,
it is possible that one layer has to be reversed, because power iteration seriation can
produce results where the band of ones in the adjacency matrix runs from top-right

155

to bottom-left (Figure 7b) instead of top-left to bottom-right (Figure 7a), which is
not good from the crossing number perspective. In some conditions (when the graph
consists of more than one connected component or even when there are multiple
components which are weakly connected to each other; with ‘noise’; suboptimal
ࣕ, etc.) it is possible that some subset of similar vertices will be positioned too far
away from their common neighbours (Figure 7c). Additionally, there is a risk that
some subsets of vertices within layers could be in reverse order (Figure 7d). Even
worse, very often multiple problems come up simultaneously.

All the problems mentioned above are solved by applying a median heuristic
to the result of power iteration seriation. The median heuristic is not just compen-
sating for the weaknesses of power iteration seriation, but the output of the latter
is also a very good initial permutation for the former, enabling it to achieve much
better results than some random permutation would. For example: on the inital
graph from Figure 1, the iterative median heuristic could only reduce the number
of crossings to 27 (Figure 8), while power iteration seriation in conjunction with
median heuristic reduced the number of crossings to 0 (Barycenter heuristic reduced
the number of crossings to 28).

Figure 7. Example graph from Figure 1 illustrating some problems with power iteration seriation: a)
one of the optimal permutations of vertices; b) lower layer in reverse order; c) subset of similar vertices
in one layer are too far from their common neighbours; d) Subset of vertices in one layer is in reverse
order

Figure 8. Result of iterative median heuristic on the initial graph from Figure 3

This kind of two-step method not only provides a much smaller number of crossings
but may also provide these results while being faster than the iterative barycenter
or median algorithm. This is possible because after preprocessing the graph with
power iteration seriation, only one iteration of the median heuristic is sufficient to
produce a superior result than the iterative barycenter or median method alone. If
time is not crucial, then additional iterations of the median heuristic may be applied
to polish the result further. Some additional improvement can also be found by try-
ing different values for PIC’s stopping criterion parameter ࣕ (10-5 – 10-7 divided by

156

number of rows in similarity matrix was usually optimal for us). Next we will give
some examples how this method performed on the real WordNet graphs.

3.2. Experiments on WordNet graphs

In this section we give an overview of our tests on the largest closed sets of synsets
from Estonian and Princeton WordNets. The largest closed set from Estonian
WordNet can be represented as a 4,945 by 457 matrix (see Table 1). In the case of
the Princeton WordNet the matrix size is 1 333 x 167 (Table 1).

We ran our tests on a PC with 6 GB of RAM and an Intel® Core™ i7-870 Proces-
sor and compared three different methods: iterative barycenter, iterative median
and our two-step method. In the two-step method we used only one iteration of
median heuristic and for PIC’s stopping criterion parameter ࣕ we chose 10-5 divided
by number of rows in similarity matrix. All 3 methods were run on the same initial
permutation of vertices. The results are shown in Table 2.

Table 2. Results of three methods compared with a random permutation on the largest closed
sets of two WordNets

Estonian WordNet (v 64) Princeton WordNet (v 3.0)
Time (s) Crossings Time (s) Crossings

Initial – 2 349 957 – 265 940

Median 4.1 904 629 0.9 36 862

Barycenter 16.9 308 444 1.5 22 927

2-step method 0.4 84 884 0.1 5 484

The two-step method turned out to be roughly 9–42 times faster than compared
methods while producing more than 3–10 times fewer crossings. From these results
we can conclude that our two-step method is the best choice for minimising the
number of crossings in WordNet graphs.

Some possible ways of using the Minimal Crossing method to detect inconsis-
tencies in WordNet structures is given by the author and others (Lohk et al. 2012a,
2012b). The detailed handling of those and others inconsistencies would require
a separate article.

4. Looking at the results

As a result of using our two-step method we did get an ordered matrix (Figure 9a).
By converting this matrix with the labels of synsets into a MS Excel worksheet

we have the possibility of studying the large closed subset more methodically. To
make it easier to understand the result it is useful to freeze the headings of rows and
columns. That makes it possible to move around in the table so that the synsets on
both levels are always visible. To find possible errors one has to study such places
in that table where conceptual synsets in rows and columns are conspicuously dif-
ferent. Usually such an occasion happens when one concept has several parents.
The decision about a possible error will be naturally made by the lexicographer.

157

'

 a) b)

Figure 9. The biggest closed subset of Estonia WordNet: a) closed subset after ordering; b) closed
subset for the investigation, converted for Excel

5. Conclusion

Wordnet as a lexical and semantical database is widely used in different language
technology applications. Therefore it is important to ensure the quality of any Word-
net used. Previous study has shown that WordNet with its hierarchical structures
consists of many relations which quite easily cause errors in the Wordnet struc-
ture (Lohk et al. 2012). In this paper we propose a formal way to detect and study
possible inconsistencies using closed subsets. The notion of a closed subset has
been explained using the WordNet tree. Separated closed subsets are represented
as matrices and a new and fast two-step method reorders such sparse relational
systems into an easily visible and understandable view. Our method has been com-
pared with other fast reordering methods and tested on Estonian and Princeton
WordNets. As a final suggestion we transform the subsets with correct syntactic
labels into an Excel spreadsheet to enable convenient study of places where the
structural connections of concepts (synonym synsets) are suspicious.

158

References
Eades, Peter; Wormald, Nicholas C. 1994. Edge crossings in drawings of bipartite graphs. –

Algorithmica, 379–403.
Flannery, P. B.; Press, H. W.; Teukolsky, A. S.; Vetterling, T. W. 2009. Numerical Recipes

in C. The Art of Scientific Computing. South Asia: Cambridge University Press India.
Jing, H. 1998. Usage of WordNet in natural language generation. – Proceedings of the Work-

shop Usage of WordNet in Natural Language Processing Systems: COLING-ACL 1998;
August 16, Montreal, Quebec, Canada, 128–134.

Jünger, Michael; Mutzel, Petra 1997. 2-Layer Straightline Crossing Minimization: Perfor-
mance of exact and heuristic algorithms. – Journal of Graph Algorithms and Applica-
tions, 1–25.

Li, X.; Szpakowicz, S.; Matwin, S. 1995. A WordNet-based algorithm for word sense disam-
biguation. – Proceedings of IJCAI 1995. Morgan Kaufmann Publishers, 1368–1374.

Lin, Frank; Cohen, William W. 2010. Power iteration clustering. – Proceeding of the 27th
International Conference on Machine Learning, June 21-24, 2010, Haifa, Israel.
Omnipress, 655–662.

Liu, Y.; Jiangsheng, Y.; Zhengshan, W.; Shiwen, Y. 2004. Two kinds of hypernymy faults in
Word-Net: the cases of ring and isolator. – Petr Sojka, Karel Pala, Pavel Smrz, Christine
Fellbaum, Piek Vossen (Eds.). Proceedings of the Second Global WordNet Conference.
Brno, Czech Republic, 20-23 January 2004. Masaryk University, 347–351.

Lohk, Ahti; Võhandu, Leo 2012. Eesti Wordnet’i struktuuri analüüsist. – Eesti Rakend-
uslingvistika Ühingu aastaraamat, 8, 139–151. http://dx.doi.org/10.5128/ERYa8.09

Lohk, Ahti; Vare, Kadri; Võhandu, Leo 2012a. First steps in checking and comparing Princ-
eton WordNet and Estonian WordNet. – Miriam Butt et al. (Eds.). Proceedings of
the EACL 2012 Joint Workshop of LINGVIS & UNCLH. April 23-24 2012, Avignon,
France. Association for Computational Linguistics, 25–29.

Lohk, Ahti; Vare, Kadri; Võhandu, Leo 2012b. Visual Study of Estonian WordNet using
Bipartite Graphs and Minimal Crossing algorithm. – Proceedings of 6th International
Global WordNet Conference, Matsue, Japan, 2012, 167–173.

Miller, G.; Beckwith, R.; Fellbaum, C.; Gross, D.; Miller, K. 1990. Introduction to WordNet:
An on-line lexical database. – International Journal of Lexicography 3, 235–312.

Morato, J.; Marzal, M. Á.; Lloréns, J.; Moreiro, J. 2004. WordNet applications. – Petr Sojka,
Karel Pala, Pavel Smrz, Christine Fellbaum, Piek Vossen (Eds.). Proceedings of the
Second Global WordNet Conference. Brno, Czech Republic, 20-23 January 2004,
270–278.

Mäkinen, Erkki; Sieranta, Mika 1994. Genetic algorithms for drawing bipartite graphs. –
International Journal of Computer Mathematics, 53 (3-4), 157–166. http://dx.doi.
org/10.1080/00207169408804322

Orav, Heili; Kerner, Kadri; Parm, Sirli 2011. Eesti Wordnet’i hetkeseisust. – Keel ja Kirjan-
dus, 2, 96–106.

Richens, Tom 2008. Anomalies in the WordNET verb hierarchy. – Proceedings of the 22nd
International Conference on Computational Linguistics: COLING-ACL 2008, August,
Manchester, UK, 729–736.

Rila, M.; Tokunaga, T.; Tanaka, H. 1998, The use of WordNet in information retrieval. – Pro-
ceedings of the Workshop Usage of WordNet in Natural Language Processing Systems:
COLING-ACL 1998, August 16, Montreal, Quebec, Canada, 31–37.

Salam, Khan Md Anwarus; Khan, Mumit; Nishino, Tetsuro 2009. Example based English-
Bengali machine translation using WordNet. – Proceedings of the Triangle Symposium
on Advanced ICT 2009 (TriSAI 2009), October 28-30, 2009. Tokyo, Japan.

Sugiyama, Kozo; Tagawa, Shojiro; Toda, Mitsuhiko 1981. Methods for Visual Understanding
of Hierarchical System Structures. – IEEE Transactions on Systems, Man and Cyber-
netics, 11 (2), 109–125. http://dx.doi.org/10.1109/TSMC.1981.4308636

159

Vider, Kadri 2001. Eesti keele tesaurus – teooria ja tegelikkus. – Margit Langemets (Toim.).
Leksikograafiaseminar “Sõna tänapäeva maailmas” / Leksikografinen seminaari
“Sanat nykymaailmassa”. Ettekannete kogumik. Eesti Keele Instituudi toimetised 9.
Tallinn: Eesti Keele Sihtasutus, 134–156.

Web References
The Global WordNet Association. http://www.globalwordnet.org/gwa/wordnet_table.html

(08.01.2013).
Results tables relevant to “Anomalies in the WordNet Verb Hierarchy” paper delivered to

COLING 2008. Manchester August 2008. http://www.rockhouse.me.uk/Linguistics/
(08.01.2013).

Princeton WordNet (version 3.0, 3.1). http://wordnet.princeton.edu/ (08.01.2013).
Estonian WordNet (version 65). http://www.cl.ut.ee/ressursid/teksaurus/test/estwn.cgi.et

(08.01.2013).

Ahti Lohk (Tallinn University of Technology), main research interests are in the field of data analysis.
ahti.lohk@ttu.ee

Ottokar Tilk (Tallinn University of Technology), main research interests are data analysis and machine
learning algorithms.
ottokar.tilk@ttu.ee

Leo Võhandu (Tallinn University of Technology), main research interests are in the field of data
analysis.
leo.vohandu@ttu.ee

160

KUIDAS LUUA KORDA WORDNET’I TÜÜPI
SÕNARAAMATUTE SUURTES KINNISTES
ALAMHULKADES

Ahti Lohk, Ottokar Tilk, Leo Võhandu
Tallinna Tehnikaülikool

WordNet kui leksikaalsemantiline andmebaas leiab laialdast kasutust keele-
tehnoloogia rakendustes, mistõttu on ilmne, et tulemuse kvaliteet sõltub paljuski
wordnet’i enda kvaliteedist. Varasemad uurimused on näidanud, et wordnet’i
 hierarhiat tekitavates puudes esineb seoseid, mis põhjustavad tema struktuuris
vigu (Lohk, Võhandu 2012). Ühe võimalusena pakutakse artiklis taolisi kõrvale-
kaldeid uurida ja avastada kinniste alamhulkade kaudu, mida esitatakse maatrik-
sina ja millele rakendatakse autorite pakutud uudset kahesammulist meetodit.
Kinniseid alamhulki selgitati tehislikult koostatud wordnet’i puu alusel. Pakutud
kahesammulist meetodit, mis sobib suurte relatsiooniliste süsteemide korrasta-
miseks, kõrvutati teiste kiirete varasemate meetoditega (raskuskeskme meetod ja
mediaanmeetod). Jõuti järeldusele, et kahesammuline meetod pakub tulemuseks
nii paremat ristumiste arvu kui ka kiiremat algoritmi kui varasemad meetodid.
Meetodit testiti Eesti ja Princetoni wordnet’idel. Maatriksina saadud tulemusi
soovitati koos sünohulkade nimedega konverteerida tabelarvutusprogrammi, lii-
kuda mööda korrastatud maatriksil olevat lairiba ning uurida ridades ja veergudes
olevaid sünohulkade neid kohti, kus mõisted silmatorkavalt erinevad.

Võtmesõnad: tesaurus, suletud hulgad, järjestamine, klasterdamine iteratiivse
astendamisega, ristumiste arvu vähendamine, WordNet

